
Nitpicking Lambda-free Higher-Order Logic

Alexander Steen1[0000−0001−8781−9462] and Christoph
Benzmüller2,1[0000−0002−3392−3093]

1 University of Luxembourg, Esch/Alzette, Luxembourg
alexander.steen@uni.lu

2 Freie Universität Berlin, Berlin, Germany
c.benzmueller@fu-berlin.de

Abstract. λ-free (comprehension free) higher-order logic has recently
been proposed and studied as a starting point for the lifting of superpo-
sition based theorem proving techniques to classical higher-order logic.
This promising line of research, which we fully support, has received
good attention in the deduction systems community due to its high po-
tential to enable significant further improvements in higher-order auto-
mated theorem proving. However, in this paper we challenge and nitpick
the λ-free higher-order logic framework. Our motivation is to gain and
share some insights about its non-trivial semantical and proof theoretical
foundations. We present some practical examples, many of which are con-
cerned with comprehension issues, that reveal some questionable, partly
counter-intuitive, inference patterns. We believe that these issues should
be known to further implementors of the logic and also to potential users
to avoid confusion in practical applications.

Keywords: Higher-Order Logic · Comprehension · Semantics · ATP

1 Introduction

A primary research focus in the automated deduction community has for decades
been on classical, single-sorted first-order logic (FOL). This has led to the devel-
opment of very powerful first-order automated theorem provers such as Vampire,
E and Spass. The success of these provers is built on at least two factors: (i) they
all adopt the superposition approach [2] as their proof theoretical foundation,
and (ii) they combine this approach with sophisticated system architectures and
highly optimised technical implementations.

Practical applications often motivate the use of more expressive logics. Multi-
ple sorts, formulas embedded at term-level, λ-abstraction and higher-order quan-
tifiers, as provided in classical higher-order logic (HOL, [1]), enable more intuitive
and often more adequate problem encodings, and they may even enable shorter
and more efficient proofs in selected areas and cases. HOL also serves as the
theoretical foundation of many modern proof assistants [15]. Another benefit of
HOL is that, when utilised as a meta-logic, it even allows for elegant semantical
embeddings of a multitude of expressive (quantified) non-classical logics, which

2 A. Steen, C. Benzmüller

in turn triggers many further applications in prominent areas including artificial
intelligence, metaphysics and natural language processing [5].

These observations have motivated a recent shift of interest in the automated
theorem proving community from its traditional focus on FOL towards support-
ing increasingly expressive logics. We consider this a very relevant movement
which fosters important ties between research activities and communities that
not too long ago still considered each other rather as antipodes.

A prominent example of an ongoing research project in that spirit is Ma-
tryoshka3, which “propose[s] to deliver very high levels of automation to users
of proof assistants by fusing and extending two lines of research: automatic and
interactive theorem proving” and to “enrich superposition and SMT with higher-
order (HO) reasoning in a careful manner, to preserve their desirable properties.”

As a starting point this project has selected λ-free higher-order logic (lFHOL,
[3]) as an intermediate study subject of choice, situated in between FOL and
HOL, in order to conduct some initial theoretical and practical research in di-
rection of the above uttered goals. The term “λ-free” thereby does not mean to
express that there is no λ-notation supported in the studied logic formalism, it
instead intends to express that no a priori assumptions on comprehension prin-
ciples are being made. In other words, the semantics of lFHOL, in contrast to
HOL, does not prerequire the existence of certain functions and relations in its
function spaces. This semantical set-up of lFHOL, however, triggers interesting
and relevant questions. For example, what inference patterns does it support
and what kind of peculiarities should users of the logic be aware of?

It is such questions this paper is concerned with. We are scrutinising the
semantics of lFHOL and investigate whether is supports some unexpected or
paradoxical reasoning patterns. Another concern is that, contrary to what has
been claimed,4 the theorem prover Zipperposition [7] seems not to implement
the newly introduced theory, since the results we obtain in our experiments
with the system diverge from the expected results in several crucial cases. In
this sense we are “nitpicking” lFHOL and its implementation. Our intend is to
positively influence this important research direction and to foster its further
development by contributing a critical discussion. As a side result we contribute
some benchmark problems for λ-free HOL that are eventually useful also to
other related research projects, and at the same time allow potential users of the
lFHOL to gain a better understanding of the logics unexpected peculiarities.

Our paper is structured as follows: In Sect. 2 we restate the syntax and
semantics of lFHOL. We then present some apparently paradoxical examples
in Sect. 3 that challenge the particular choice of semantics and we hint at the
source of the problem. Moreover, we present some example conjectures for which
the answers obtained from Zipperposition diverge from the expected results.

3 http://matryoshka.gforge.inria.fr
4 In [3] it is stated on p. 2 that “The calculi are implemented in the Zipperposition
prover”, and on p. 11 “We have now also implemented a complete λ-free higher-order
mode based on the four calculi described in this paper, extended with polymorphism.”
Zipperposition was used to evaluate the theoretical calculi presented in [3].

http://matryoshka.gforge.inria.fr

Nitpicking Lambda-free Higher-Order Logic 3

2 λ-Free Higher-Order Logic

In this section we recapitulate the notion of lFHOL as introduced in previous
work [3]. The definitions given below are identical with the original ones unless
stated otherwise. Since we are not suffering from space restrictions we may give
them in a more explicit and detailed representation though.

2.1 Syntax

lFHOL is a typed logic in which every term is assigned a simple type.

Types. Fix a set of base types BT. The set of simple types (henceforth referred
to as types) is then given by the following inductive definition: Every ι ∈ BT is
a type, and for types τ and ν we have that τ → ν is a type.

Remark 1 (Boolean Type). There is no dedicated, bivalent base type o ∈ BT for
Boolean-typed entities explicitly mentioned in [3]. Clearly, the omission of such
a base type o seems in line with the works’ intended strict separation of terms
and formulas. However, this omission drastically restricts the language and we
give examples below that illustrate some questionable or undesirable effects.

Typed Variables. Typed variables have the form x : τ , where τ is a type. The
set of typed variables is denoted V.

Signatures. A signature is a non-empty set Σ of symbols with type declarations
of the form f : τn ⇒ τ (with n ≥ 0), where the τi and τ are types. In case
n = 0 we simply write f : τ . Note that ⇒ is not a type constructor, that is,
τn ⇒ τ is not a valid type itself. A type declaration is only indicating that f
needs to be applied to n mandatory arguments (see also below). An example
signature is given by Σ = {f : ι × ι ⇒ ι → ι, g : ι → ι → ι}, where f has
two mandatory arguments and one optional argument, g is a function of two
(optional) arguments, and ι ∈ BT is a type. The distinction of mandatory and
optional arguments is motivated by the fact that naive Skolemization is unsound
with respect to higher-order logics without the axiom of choice [9,10], because
Skolem symbols might be instantiated as proper functions symbols [4, pp. 20–
22]. Following [3], τn ambiguously denotes τ1 × . . .× τn and (τ1, . . . , τn) for use
in type declarations and for mandatory arguments, respectively.

Terms. Given a signature Σ and a set V of typed variables, the set T XΣ of lFHOL
terms is inductively defined as follows:

(i) Every variable x : τ ∈ X ⊆ V is a term.
(ii) If f : τn ⇒ τ ∈ Σ is a symbol from the signature and, for all i ∈ {1, . . . , n},

every ui : τi is a term, then f(un) : τ is a term.
(iii) If t : τ → ν and u : τ are terms, then t u : ν is a term, called application.

4 A. Steen, C. Benzmüller

Non-application terms are called heads. Terms can be decomposed in a unique
way into a head applied to zero or more arguments. If f : τn ⇒ τ ∈ Σ, for n > 0,
is a function symbol with n mandatory arguments, then f alone, i.e. without any
arguments applied to it, is not considered a proper term. Only the fully applied
form f(t1, . . . , tn) is a term in this case, assuming that all ti : τi ∈ T XΣ are terms.
All terms and subterms t : τ are uniquely typed. The type information : τ may
be omitted if obvious from the context or irrelevant.

Formulas. The formulas of lFHOL are inductively defined by:

(i) If t : τ and s : τ are terms, then t ≈τ s is a formula.
(ii) ⊥ and > are formulas.
(iii) If ϕ and ψ are formulas, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ and ϕ −→ ψ are formulas.
(iv) If x is variable and ϕ a formula, then ∀x . ϕ and ∃x . ϕ are formulas.

By convention t 6≈ s abbreviates ¬(s ≈ t). Diverging from the original pre-
sentation, we require the terms s and t in s ≈ t to have the same type. We
conjecture that the omission of this requirement in [3] has been an oversight, so
that our restriction does not change the intended syntax of lFHOL. Analogous
to e.g. classical first-order logic, lFHOL strictly separates between formulas and
terms. This is different to the term-logic HOL, where formulas are treated as
special terms, namely those with Boolean type o. A relevant syntactic difference
between HOL and lFHOL thus is that in the latter formulas may not occur as
proper subterms in any expression.

Remark 2 (Propositional symbols). An obvious question is to which degree the
practical limitations imposed by the mentioned restrictions on the syntax of
lFHOL are impeding practical applications. In particular, there seems no ob-
vious way of expressing atomic propositions or predicates in lFHOL as usually
expected. For example, formulas such as “rains∨¬rains” (with an atomic propo-
sition rains) and formulas expressing a predicate application “tall x ” (for some
predicate symbol tall) are apparently excluded from the syntax of lFHOL. In
lFHOL corresponding expressions could only be formed on the term level. How-
ever, without a Boolean type o ∈ BT, the usual approach taken in equality-based
first-order logic, where non-equality predicates are treated as special equations
(with artificially introduced symbols for truth and falsehood as in “(raining ≈
>)∨¬(raining ≈ >)” or in “tall(x) ≈ >”), is syntactically prevented in lFHOL. If
lFHOL, in contrast, is really intended to strictly exclude such formulas as men-
tioned, then the question arises whether it is justified to call it a logic language.

y

Remark 3 (Typed quantification). Our experiments conducted with lFHOL’s im-
plementation in Zipperposition, described further below, suggests that lFHOL
can indeed express predicate symbols and atomic propositions. Contrary to the
discussion above, this observation is in fact suggesting the existence of a ded-
icated base type o for Booleans in lFHOL. This in turn raises the question

Nitpicking Lambda-free Higher-Order Logic 5

whether quantification over predicate variables, relations, and formulas are al-
lowed in lFHOL. For example, assuming the existence of a Boolean type o ∈ BT,
the formulas

∀(p : ι→ o).∃(q : ι→ o).∀(x : ι). (p x)←→ ¬(q x)

∃(p : o).p ∨ ¬p

are syntactically unproblematic regarding the lFHOL core restriction that for-
mulas may not be nested under terms. y

2.2 Semantics

A lFHOL interpretationM is a tupleM = (U , E , I) where

(i) U is a typed-indexed family of non-empty sets Uτ (called domains),
(ii) E is a family of functions Eτ,ν : Uτ→ν → (Uτ → Uν), and
(iii) I is a function that maps each constant symbol f : τn ⇒ τ ∈ Σ to an

element I(f) of Uτn
→ Uτ .

Note that lFHOL domains Uτ do not contain set-theoretic functions, but rather
some objects that are assigned a applicative behaviour by E . The interpreta-
tion function I, in contrast, assigns proper functions to function symbols with
mandatory arguments. The introduced semantical structures thus share some
similarities with so-called general pre-Henkin structures (or applicative struc-
tures) that generalize Henkin models, in which the function domains only con-
tain proper functions. This transition from functions to applicative structures is
needed to support the intended non-extensional base setting of lFHOL, in which
functional extensionality is considered optional but not mandatory (for a similar
construction see [6]).

A valuation ξ is a function that maps variables x : τ to elements of Uτ . Given
an lFHOL interpretation M : (U , E , I) and a valuation ξ, the denotation [[t]]ξM
of a term t is defined as follows:

(i) [[x]]ξM := ξ(x)

(ii) [[f(tn)]]
ξ
M := I(f)

(
[[tn]]

ξ
M
)

(iii) [[s t]]ξM := E
(
[[s]]ξM

)(
[[t]]ξM

)
The truth-value [[φ]]ξM ∈ {0, 1} of a lFHOL formula φ is defined “as in first-
order logic”. Although not explicitly stated, we assume that this means that
the following identities hold (in addition to the evaluation rules of quantified
formulas):

(i) [[s ≈ t]]ξM :=

{
1 if [[s]]ξM = [[t]]ξM
0 otherwise

(ii) [[¬φ]]ξM :=

{
1 if [[φ]]ξM = 0

0 otherwise

6 A. Steen, C. Benzmüller

(iii) [[φ ∧ ψ]]ξM :=

{
1 if [[φ]]ξM = 1 and [[ψ]]ξM = 1

0 otherwise
(iv) etc.

A formula φ is true in M ≡ (U , E , I) under assignment ξ, written M, ξ |= φ if
and only if [[φ]]ξM ≡ 1.

Remark 4. The choice of the term “λ-free higher-order logic” can be criticised
as suboptimal. From the definition of semantics as just presented it becomes
clear that the key aspect is that no comprehension principles are a priori as-
sumed. An alternative name would thus have been “comprehension-free higher-
order logic”. This is also because syntactical variants of higher-order logic with
comprehension but without λ-notation are already existing in the philosophy
literature [13]. Choosing the term “λ-free higher-order logic” to characterise a
comprehension-free higher-order logic with λ-notation, could thus lead to some
avoidable confusion in interdisciplinary communication. y

Remark 5. Also the “higher-order” part in “λ-free higher-order logic” is at least
debatable in a setting without any comprehension principles. Philosophical lo-
gicians, for example, state that it is exactly these principles that make a logic
higher-order (or second-order, for that matter). As an example, Shapiro defines
the broad range of higher-order logics as follows:

”A [...] language is called second-order or higher-order if it has variables that
range over relations, propositional functions, properties [...]. In any case, the
distinguishing feature of second- or higher-order languages is not so much the
nature of the individual items that fall in the range of the extra variables, but
rather their extension or totality.” [12].

Here, the focus is on the nature of the domains the quantifiers range over.
Enderton argues that ”[...] using general pre-structures amounts to treating a
second-order language as a many-sorted first-order language.” [8, §3]. This argu-
ment generalizes to finite-order (higher-order) languages. y

3 Discussion

This section summarises our example driven experiments and assessments of the
lFHOL approach. The motivation of our work was to gain clarity about several
questions that we could not precisely answer from the dense presentation in [3].
The particular questions addressed are highlighted in gray boxes. The examples
we present here point to some questionable and partly counter-intuitive reasoning
patterns that, as we believe, require attention by users and implementors of the
logic.

Nitpicking Lambda-free Higher-Order Logic 7

For the experiments we used the Zipperposition reasoner5, which implements
all four different calculi (extensional and intensional variants) presented in [3] in
a sound and complete way.

All problem statements that are used for practically evaluating the following
discussion points are presented in TPTP THF format in Appendix A.

3.1 Boolean Type

Is there a Boolean type or not?

As discussed in Sect. 2 before, lFHOL does not guarantee the existence of a ded-
icated Boolean type o ∈ BT. At first sight this suggest that there are no atomic
propositions, no predicate symbols and that quantification over relations, pred-
icates, etc. is excluded. Even very simple formulas such as instances of the law
of excluded middle can then not even be formulated and the question natu-
rally arises why we should call the language a logic. However, from benchmark
measurements [3] the contrary can be inferred. These benchmark example in
particular suggest that (i) there is a type o of Booleans, and that (ii) quantifi-
cations over relations, predicates and other symbols whose result type is o is
indeed covered by the approach. This is because the hand-selected benchmark
set6 used in [3] for evaluating lFHOL, resp. its sound and complete implemen-
tation in Zipperposition, does contain a number of TPTP THF problems that
include exactly these syntactical constructs. At the same time this benchmark
set explicitly excludes problems that contain formulas in proper subterm posi-
tions. For example, problem SYO013^1 from the benchmark set in in [3] contains
atomic propositions, SET014^5 uses quantification over predicates, and SYO019^1
and SYO021^1 uses quantification over propositions.

Since these language features are used for evaluating lFHOL, we must con-
jecture that a Boolean type o does in fact exist and we therefore assume this in
the remainder.

3.2 Comprehension

Does the syntactical presentation of a formula influence its validity?

In a logic setting with a many-sorted language including (higher-order) functions
and quantification over symbols of functional type, the question quite naturally
arises what the quantifiers actually range over. Very often in second-order and

5 We use the exact same version of the Zipperposition prover (commit 7fe2ebe) and
the same run scripts as provided by Bentkamp et al. for their evaluation in [3], see
http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/ for details. The prover
was built and executed as explained there.

6 See http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/list_THF.txt for
the full list of TPTP THF problems.

http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/
http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/list_THF.txt

8 A. Steen, C. Benzmüller

higher-order logics comprehension principles are assumed that clarify this ques-
tions. The following comprehension principle (an axiom schema, where P does
not occur free in φ), for example, postulates the existence of predicates that can
be defined in terms of formulas φ (with free variables x1 . . . xn) of the logical
language:

∃P.∀x1 . . . xn. P x1 . . . xn ←→ φ

Comprehension thus augments the logic with some knowledge about the under-
lying semantical structure, reflecting that the semantical domain of functions is
chosen to be a subset of the powerset of total functions between the respective
types (the complete power set in the case of standard semantics).

Without comprehension axioms, second- and higher-order languages are es-
sentially treated as a many-sorted first-order logic with additional syntactical
means of quantifying about function symbols. This is because the set Uτ→ν , for
some types τ and ν, is chosen to be any subset of set of total functions from Uτ
to Uν , without the requirement that certain functions need to exist (modelled by
E in the case of lFHOL). While this topic is certainly of theoretical interest, and
quite a number of discussions exist in the field of philosophical logic, there are
also consequences for the practical employment of such languages in reasoning.

As a running example, consider the following meta-logical specification of
abbreviations LEQ and AEQ in lFHOL, also referred to as Leibniz equality and
Andrews equality, respectively:

LEQ[sτ , tτ] =def ∀(p : τ → o). (p s) −→ (p t)

AEQ[sτ , tτ] =def ∀(r : τ → τ → o). (∀(z : τ). r z z) −→ (r s t)

Note that LEQ and AEQ are meta-logical abbreviations and do not constitute
logical symbols of the signature Σ. By convention, meta-logical symbols are
written in uppercase letters in the following.

In contrast to classical higher-order, where Leibniz equality and Andrews
equality coincide and additionally denote a proper equality under certain condi-
tions [6], LEQ and AEQ do not coincide in lFHOL. In other words, the formula

∀(x : ι).∀(y : ι).LEQ[x , y]←→ AEQ[x , y] (1)

is not a theorem of lFHOL. This is due to the fact that the functional do-
main Uι→ι might not contain enough elements to enforce this identity. As an
example, consider the lFHOL model structure M = (U , E , I), where Uι =
{a, b}, a 6= b, Uι→o = {constι>, ida} and Uι→ι→o = {constιι>}. Let furthermore
E(constι>)(a) = E(const>)(b) = >, E(ida)(x) = > if and only if x = a, and
E(constιι>)(x) = constι> for every x ∈ Uι. It holds that M 6|= ∀(x : ι).∀(y :
ι).LEQ[x , y]←→ AEQ[x , y]. Note that there does not exist an equivalent Henkin
model for classical HOL, since the domain of relational symbols Uι→ι→o does not
contain enough functions to ensure that every λ-term is assigned a proper deno-
tation.

Another formulation of the problem postulates two logical symbols, i.e. {leq :
ι → ι → o, aeq : ι → ι → o} ⊆ Σ, that are assigned the properties of Leibniz

Nitpicking Lambda-free Higher-Order Logic 9

and Andrew equality, LEQ and AEQ, respectively via appropriate axioms:

∀(x : ι).∀(y : ι). leq x y ←→ LEQ[x , y]

∀(x : ι).∀(y : ι). aeq x y ←→ AEQ[x , y]
(2)

The following lFHOL formula then states the equivalence between both relational
concepts:

∀(x : ι).∀(y : ι). leq x y ←→ aeq x y

Similar to the version above, this equivalence compares Leibniz and Andrews
equality with the difference that now these concepts are represented by dedicated
symbols. Surprisingly, this representional variant of the proposition becomes a
theorem in lFHOL.7 This is due to the fact that the semantical domains are now
guaranteed to contain elements that can be used as witnesses within refutations.
In other words, we have now formulas which intuitively are equivalent, but which
are not so in the investigated logic.

Another example for comprehension issues is reasoning with equality itself.
It seems odd to the authors that ∀(x : ι).x ≈ x is a theorem of the system while
∃(eq : ι → ι → o).∀(x : ι). eq x x is not, given that partial applications are
supported by the language and that equality exists by design (on the level of
formulas).

Whether the above examples constitute desired reasoning patterns remains
an open question. For potential users of the logic the answer should clearly be
as transparent as possible.

3.3 Proofs about the Booleans type

What is the interpretation of the (assumed) Boolean type?

Following the observations from §3.1, there seems to be a type of Booleans
(otherwise we could not quantify over it). As a consequence, the type of Booleans
is necessarily reflected by a dedicated domain Uo in the semantical level. In
classical logics a domain of Booleans is usually bivalent, i.e. consisting of exactly
two distinct semantical objects Uo = {t, f}, representing truth and falsehood,
respectively.

In a bivalent classical logic with quantification over formulas, it should be
provable that there exists truth, i.e. that ∃(p : o). (p ←→ >) is a theorem.
And indeed, this seems to be a theorem of lFHOL (seconded by Zipperposition).
However, the dual assertion that there exists falsehood, ∃(p : o). (p ←→ ⊥),
cannot be proven in lFHOL. After negating, clausification and simplification
yields the clause set {x ≈ >} from which there seems to be no refutation in
any of the four lFHOL calculi presented by Bentkamp et al.. In the first case
(existence of truth), a refutation can be found using an instance of equality

7 This is what our experiments with the sound and complete implementation of the
lFHOL calculi in Zipperposition confirm.

10 A. Steen, C. Benzmüller

resolution8 which is not possible for positive literals. As a direct consequence,
the formula ∃(p : o).∃(q : o).¬(p←→ q) is not derivable in the calculi.

Now, one could argue that the semantics of lFHOL does not guarantee that
the domain of Booleans is strictly bivalent and that falsehood needs to exist.
However, the formula ∃(p : o).∃(q : o).∃(r : o).

(
¬(p ←→ q) ∧ ¬(q ←→ r) ∧

¬(p ←→ r)
)
, stating that there exist three distinct objects of Boolean type,

is unsatisfiable and Zipperposition quickly finds a refutation for this. In fact,
both the assumptions that there exists only one Boolean object and that there
exist three or more elements in the Boolean domain are unsatisfiable and can
be refuted9. This, in contrary to the above, suggests that the Boolean domain
is bivalent.

Surprisingly, when reformulating the bivalence conjecture using a bijection
f : ι → o between the domain of individuals and the Boolean domain, the
desired result can be proven in Zipperposition. This now raises the question
whether the proof calculi are too weak to deduce all desired theorems (and are
thus incomplete) or if bivalence is not supposed to be a theorem of the system
(and the calculi are thus unsound). In any case, there should be a discussion
about the originally intended semantics of the system.

3.4 Boolean Extensionality

What are the extensionality properties of relation types?

There seems to be an issue with full extensionality principles. Consider the run-
ning example of Leibniz and Andrews equality, in the variant with explicit logical
symbols representing the concepts, cf. (2).

In an extensional setting, one would expect that if both concepts coincide
point-wise, then both concepts are equal. In particular, as discussed in §3.2, we
have that

∀(x : ι).∀(y : ι). leq x y ←→ aeq x y

is a theorem of lFHOL (and there exists a refutation by Zipperposition). How-
ever, using both extensional calculi Zipperposition cannot prove

leq ≈ aeq

and terminates with a saturated set. Under the assumption that Boolean types
exist, a fully extensional semantics is also extensional for types containing Boolean-
typed results10 and therefore, the above equality should hold.

The authors conjecture that this might be the case because, in an extensional
setting, lFHOL and Zipperposition depend on additional extensionality axioms
which might be not properly instantiated for Boolean-type symbols.
8 Zipperposition internally identifies non-equality predicates p with an equality to an
explicit truth symbol, i.e. as in p ≈ >.

9 This can be modeled by postulating the existence of an bijection between the type
of individuals and the type of Booleans with respective size restrictions.

10 Cf. the definition of extensional interpretations in [3].

Nitpicking Lambda-free Higher-Order Logic 11

3.5 Zipperposition

Why is Zipperposition not consistently answering the above questions?

While we argue that the aspects discussed further above are non-trivial for users
of lFHOL and possible implementors of further systems based on that logic,
our case is emphasized by the fact that the implementors of lFHOL reasoning
in Zipperposition too did overlook some subtle consequences of its non-trivial
semantics.

Pre-processing and comprehension. A popular pre-processing technique for re-
ducing the size of the initial clause set during clausification is formula renam-
ing [11], or in the context of HOL reasoning argument extraction in general [16].
Here, subformulas are replaced by fresh propositional symbols that are then,
in a second step, logically linked to the replaced formula using additional ax-
ioms. While this technique can improve reasoning effectivity in first-order and
higher-order logic, in the setting of lHFOL this technique threatens soundness.

Consider the statement of equality between Andrews and Leibniz equality
without explicit symbols, cf. equation (1). As discussed before, formula (1) is
counter-satisfiable in lFHOL. For the sake of the example, syntactical represen-
tation of the formula is changed as follows:

∀(x : ι).∀(y : ι).
(
LEQ[x , y]←→ AEQ[x , y]

)
←→ >

This formula is arguably equivalent to (1), however Zipperposition classifies it
as theorem in every of the four calculi. When inspecting the proof certificates
provided by Zipperposition, it becomes apparent that this unexpected result
is caused by illegitimate formula renaming during pre-processing. The original
problem is internally transformed into the following problem statement (TPTP
THF):
%%% introduced by pre -processing
thf(fresh1_type , type , fresh1: ($i>$o) > $i > $i > $o).
thf(fresh1 , axiom ,

![P:$i >$o ,X:$i ,Y:$i]: (
(fresh1 @ P @ Y @ X) <=> ((P @ X) => (P @ Y)))).

thf(fresh2_type , type , fresh2: ($i>$i>$o) > $i > $i > $o).
thf(fresh2 , axiom ,

![R:$i >$i >$o,X:$i ,Y:$i]: (
(fresh2 @ R @ Y @ X) <=> ((![Z:$i]: (R @ Z @ Z)) => R @ X @ Y))).

%%% transformed conjecture
thf(c, conjecture , (

(![X:$i,Y:$i]: (
(![P:$i>$o]: (fresh1 @ P @ Y @ X))

<=> (![R:$i >$i>$o]: (fresh2 @ R @ Y @ X)))
) <=> $true

)).

This problem, however, resembles the second variant discussed in §3.2 which has,
due to lack comprehension of principles, a different semantics.

It is an intriguing question whether there are more pre-processing techniques
where such a behaviour occurs and which, as a consequence, can not be employed
within lFHOL provers.

12 A. Steen, C. Benzmüller

Extensionality. After reading the input problem, Zipperposition transforms equal-
ities a ≈ b between objects of Booleans type into equivalences a ←→ b. As the
language of lFHOL allows equalities between terms only and it is not clear
whether Boolean terms qualify for this, this might not be an error in a strict
sense. However, we argue that this is hardly desired behaviour, as such an trans-
formation easily introduces unsoundness when reasoning in an intensional set-
ting. As an example, in the evaluation of lFHOL and Zipperposition [3] the
problem SYO015^1 is used as a benchmark. This problem conjectures the in-
equality p 6≈ ¬p between a formula p and its negation, which is not a theorem
in an intensional setting but a theorem in an extensional logic. Using the above
transformation, Zipperposition finds a prove in all four calculi, including the in-
tensional variants. This behaviour is in a way opposing the approach of handling
extensionality as presented in §3.4.

4 Summary and Further Work

Our objective has been to rationally reconstruct and assess the language and
logic of λ-free higher-order logic as introduced in [3]. We have been unsuccess-
ful in the sense that we could not reach a satisfying point of clarification. Is
lFHOL really intended to exclude very basic statements such as “rains∨¬rains”
or “tall x ” from being expressable, and if so, what justifies the use of term “logic”?
If in contrast the exclusion of such basic logical expressions is not intended it
remains unclear, for example, whether certain (restricted) comprehension prin-
ciples are silently assumed in lFHOL and if Boolean extensionality is addressed.
Also a thorough study of Zipperposition, the de-facto reference implementation
of lFHOL, did not help to clarify the raised questions. In fact, several answers
that were provided by the system distorted the picture even more.

We think that a detailed explication of lFHOL’s language restrictions and
its semantics is required, and that the logics implementation in Zipperposition
should be precisely aligned with it. This is particularly true since lFHOL, in
our opinion, is a very promising starting and reference point for further work on
the lifting the superposition approach from first-order logic to higher-order logic.
However, there should be a solid and easy accessible semantical basis from which
such a development can progress carefully. To reuse the logic and optimally gain
from its achievements, the situation as described in this paper, in contrast, is
kind of unsatisfying. In particular, any project interested in integrating Zipper-
position as a trusted black box in other applications or tools, should rather be
careful at the current state of development. Moreover, there is already ongoing
work on implementing further theorem proving systems based on [3], including
a lFHOL-version of the E prover [14]. Further work could try to clarify some
of the questions raised here empirically by conducting further experiments with
such emerging alternative implementations. However, a preferred solution is if
the presented questions are answered in an update version of [3] that provides
a precise and easy accessible language and semantics definition for lFHOL. This

Nitpicking Lambda-free Higher-Order Logic 13

way it will be possible to identify the apparent differences between the intended
semantics lFHOL and its implementation in Zipperposition.

References

1. Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, summer 2018 edn.
(2018)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving
with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994).
https://doi.org/10.1093/logcom/4.3.217

3. Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for
Lambda-Free Higher-Order Logic. In: IJCAR. Lecture Notes in Computer Science,
vol. 10900, pp. 28–46. Springer (2018). https://doi.org/10.1007/978-3-319-94205-
6_3

4. Benzmüller, C.: Higher-order automated theorem provers. In: Delahaye, D.,
Woltzenlogel Paleo, B. (eds.) All about Proofs, Proof for All, pp. 171–214. Math-
ematical Logic and Foundations, College Publications, London, UK (2015)

5. Benzmüller, C.: Universal (meta-)logical reasoning: Recent suc-
cesses. Science of Computer Programming 172, 48–62 (2019).
https://doi.org/10.1016/j.scico.2018.10.008

6. Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and
extensionality. Journal of Symbolic Logic 69(4), 1027–1088 (2004).
https://doi.org/10.2178/jsl/1102022211

7. Cruanes, S.: Extending superposition with integer arithmetic, structural induction,
and beyond. Ph.D. thesis, École polytechnique (2015)

8. Enderton, H.B.: Second-order and higher-order logic. In: Zalta, E.N. (ed.) The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Uni-
versity, fall 2015 edn. (2015)

9. Miller, D.A.: Proofs in higher-order logic. Ph.D. thesis, Carnegie Mellon University
(1983)

10. Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370
(1987). https://doi.org/10.1007/BF00370646

11. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-
book of Automated Reasoning, pp. 335–367. Elsevier and MIT Press (2001)

12. Shapiro, S.: Second-order logic, foundations, and rules. The Journal of philosophy
87(5), 234–261 (1990)

13. Van Benthem, J., Doets, K.: Higher-order logic. In: Handbook of philosophical
logic, pp. 189–243. Springer (2001)

14. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: 25th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2019).
LNCS (2019), to be published

15. Wiedijk, F. (ed.): The Seventeen Provers of the World, Foreword by Dana
S. Scott, Lecture Notes in Computer Science, vol. 3600. Springer (2006).
https://doi.org/10.1007/11542384

16. Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normalization tech-
niques for HOL. In: IJCAR. Lecture Notes in Computer Science, vol. 9706, pp.
362–370. Springer (2016). https://doi.org/10.1007/978-3-319-40229-1_25

https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1007/978-3-319-94205-6_3
https://doi.org/10.1007/978-3-319-94205-6_3
https://doi.org/10.1016/j.scico.2018.10.008
https://doi.org/10.2178/jsl/1102022211
https://doi.org/10.1007/BF00370646
https://doi.org/10.1007/11542384
https://doi.org/10.1007/978-3-319-40229-1_25

14 A. Steen, C. Benzmüller

A Experiment Summary

Problem Intentional
Non-purifying

Intentional
Purifying

Extensional
Non-purifying

Extensional
Purifying

SYO013^1 X1 X1 X X
SET014^5 X X X X
SYO019^1 X X X X
SYO021^1 X1 X1 X X
leq-aeq × × × ×
leq-aeq-variant X X X X
leq-aeq-symbols X X X X
leq-aeq-symbols-ext × × × ×
truth-exists X X X X
falsehood-exists × × † †
two-different-bools × × † †
three-different-bools X X X X
one-boolean X X X X
more-booleans X X X X
exactly-two-bools X X X X
SYO015^1 X1 X1 X X

X: Theorem/Unsatisfiable
×: Saturated set (GaveUp)
†: Proof search diverges

Results with superscript 1 are not consistent with classical HOL semantics.

Problem Statments

Listing 1.1. SYO013^1 containing atomic propositions and predicate symbols.
thf(a_type ,type ,(

a: $o)).

thf(b_type ,type ,(
b: $o)).

thf(p_type ,type ,(
p: $o > $o)).

thf(conj ,conjecture ,
((a

& b
& (p @ a))

=> (p @ b))).

Listing 1.2. SET014^5 containing quantification over predicates.
thf(a_type ,type ,(

a: $tType)).

thf(cBOOL_PROP_32_pme ,conjecture ,(
! [X: a > $o,Y: a > $o,Z: a > $o] :

Nitpicking Lambda-free Higher-Order Logic 15

((! [Xx: a] :
((X @ Xx)

=> (Z @ Xx))
& ! [Xx: a] :

((Y @ Xx)
=> (Z @ Xx)))

=> ! [Xx: a] :
(((X @ Xx)

| (Y @ Xx))
=> (Z @ Xx))))).

Listing 1.3. SYO019^1 containing quantification over formulas.
thf(conj ,conjecture ,(

! [X: $o,Y: $o] :
((X

& Y)
<=> ~ (~ (X)

| ~ (Y))))).

Listing 1.4. SYO021^1 containing quantification over formulas and equality between
Booleans.
thf(conj ,conjecture ,(

! [X: $o,Y: $o] :
((X

& Y)
= (~ (~ (X)

| ~ (Y)))))).

Listing 1.5. leq-aeq stating the equivalence of LEQ and AEQ without explicit symbols.
thf(conj , conjecture ,

![X:$i ,Y:$i]: (
(![P:$i>$o]: ((P @ X) => (P @ Y)))
<=>

(![R:$i>$i>$o]: (
(![Z:$i]: (R @ Z @ Z)) => (R @ X @ Y))))).

Listing 1.6. leq-aeq-symbols stating the equivalence of LEQ and AEQ using explicit
symbols leq and aeq, respectively.
thf(leq_type , type , leq: $i >$i>$o).
thf(leq_def , axiom ,

![X:$i ,Y:$i]: (
(leq @ X @ Y) <=> (![P:$i>$o]: ((P @ X) => (P @ Y))))).

thf(aeq_type , type , aeq: $i >$i>$o).
thf(aeq_def , axiom ,

![X:$i ,Y:$i]: (
(aeq @ X @ Y) <=>

(![R:$i>$i>$o]: (
(![Z:$i]: (R @ Z @ Z)) => (R @ X @ Y))))).

thf(conj , conjecture ,
![X:$i,Y:$i]: (
(leq @ X @ Y) <=> (aeq @ X @ Y))).

Listing 1.7. leq-aeq-symbols-ext stating the equality of the symbols leq and aeq.
thf(leq_type , type , leq: $i >$i>$o).
thf(leq_def , axiom ,

![X:$i ,Y:$i]: (

16 A. Steen, C. Benzmüller

(leq @ X @ Y) <=> (![P:$i>$o]: ((P @ X) => (P @ Y))))).
thf(aeq_type , type , aeq: $i >$i>$o).
thf(aeq_def , axiom ,

![X:$i ,Y:$i]: (
(aeq @ X @ Y) <=>

(![R:$i>$i>$o]: (
(![Z:$i]: (R @ Z @ Z)) => (R @ X @ Y))))).

thf(conj , conjecture , leq = aeq).

Listing 1.8. truth-exists stating the existence of a true formula.
thf(conj , conjecture , ?[P:$o]: (P <=> $true)).

Listing 1.9. falsehood-exists stating the existence of a false formula.
thf(conj , conjecture , ?[P:$o]: (P <=> $false)).

Listing 1.10. two-different-bools stating the existence of two non-equivalent formulas.
thf(conj , conjecture , ?[P:$o ,Q:$o]: (~(P <=> Q))).

Listing 1.11. three-different-bools stating the existence of two non-equivalent formulas.
thf(conj , conjecture , ?[P:$o ,Q:$o,R:$o]: (~(P <=> Q) & ~(Q <=> R) & ~(P <=> R))).

Listing 1.12. one-boolean stating the existence of only one Boolean object.
% Only one individual
thf(a,type , a:$i).
thf(exactlyOne , axiom , ![X:$i]: (X = a)).

% Bijection into Booleans possible?
thf(f, type , f:$i>$o).
thf(surjection , axiom , (

(?[X:$i]: (f @ X))
& (?[X:$i]: (~(f @ X)))).

thf(injection , axiom , (
![X:$i ,Y:$i]: (((f @ X) <=> (f @ Y)) => (X = Y))

)).

Listing 1.13. more-booleans stating the existence of three or more Boolean objects.
% At least three distinct individuals
thf(a,type , a:$i).
thf(b,type , b:$i).
thf(c,type , c:$i).
thf(distinct , axiom , (a != b) & (b != c) & (a != c)).

% Bijection into Booleans possible?
thf(f, type , f:$i>$o).
thf(surjection , axiom , (

(?[X:$i]: (f @ X))
& (?[X:$i]: (~(f @ X)))).

thf(injection , axiom , (
![X:$i ,Y:$i]: (((f @ X) <=> (f @ Y)) => (X = Y))

)).

Nitpicking Lambda-free Higher-Order Logic 17

Listing 1.14. exactly-two-bools stating the existence of exactly two distinct Boolean
objects.
% Exactly two individuals
thf(a,type , a:$i).
thf(b,type , b:$i).
thf(distinct , axiom , (a != b)).
thf(exactly , axiom , ![X:$i]: ((X = a) | (X = b))).

% Are both sets of the same cardinality?
thf(f, type , f:$i>$o).
thf(surjection , axiom , (

(?[X:$i]: (f @ X))
& (?[X:$i]: (~(f @ X)))).

thf(injection , conjecture , (
![X:$i ,Y:$i]: (((f @ X) <=> (f @ Y)) => (X = Y))

)).

Listing 1.15. leq-aeq-variant stating the equivalence of LEQ and AEQ without explicit
symbols (variant).
thf(c, conjecture , (

(![X:$i,Y:$i]: (
(![P:$i>$o]: ((P @ X) => (P @ Y)))

<=> (![R:$i >$i>$o]: ((![Z:$i]: (R @ Z @ Z)) => (R @ X @ Y)))
) <=> $true

)).

Listing 1.16. SYO015^1 stating the inequality of a formula and its negation.
thf(a,type ,(

a: $o)).

thf(conj ,conjecture ,(
a != (~ (a)))).

	Nitpicking Lambda-free Higher-Order Logic

